EFFICIENCY OF EVACUATED TUBULAR SOLAR THERMAL COLLECTOR

Junkun Ma; Xialu Wei
Southeastern Louisiana University

October 1

Presented at the 2011 COMSOL Conference in Boston
Solar heating

- Solar thermal energy for both domestic and commercial applications such as water heating;
- Composed of solar thermal collectors, storage tank, heat exchanger, and control systems;
- A thermodynamic process;
- Passive vs. active systems
- High efficiency of converting and utilizing solar energy.
Solar Thermal Collector

- Solar Thermal Collector
 - Captures the sun’s radiation energy;
 - Turns solar energy into thermal energy;
 - Transfers heat to the working fluid.

- Batch Collector
 - Easy to design and install;
 - Less energy capture;
 - Inefficient.
Solar Thermal Collector (continue)

- Flat Plate Collector
 - Weather proofed box;
 - Dark absorber plate;
 - Flow tubes

- Evacuated Tube Collector
 - Two concentric glass tubes;
 - Vacuum in between;
 - Most efficient collector.
Objectives

- Efficiency of Single Ended Evacuated Tube Collector
Objectives (continue)

- **Mounting Angle**
 - Components of gravity:
 - Facilitating or impeding Efficiency;
 - Range: $15^\circ - 90^\circ$.

- **Aspect Ratio**
 - Aspect ratio between tube diameter and length;
 - Longer tube vs. shorter tube (same diameter);
 - Length: 1.2m – 1.8m.

\[G_x = G \cdot \sin \theta \\
\[G_y = G \cdot \cos \theta \]
Approaches – Geometry Modeling

- 2D and 3D Geometric Models
 - Length: 1200 mm
 - Inner Tube Diameter: 47 mm
 - External Tube Diameter: 52 mm
Approaches – System Analysis

Heat Transfer

Heat Conduction in Solid:

\[\nabla \cdot (-k \nabla T) = Q \]

Where,

- \(k \): thermal conductivity;
- \(T \): absolute temperature;
- \(Q \): heat source.

Heat Convection in Fluid

\[\nabla \cdot (-k \nabla T) = Q - \rho C_p u \cdot \nabla T \]

Where,

- \(\rho \): density of fluid;
- \(C_p \): specific heat capacity;
- \(u \): velocity of fluid.
Fluid Dynamics

Causes: Temperature difference and density changes

\[\rho u \cdot \nabla u = \nabla [-pI + \eta (\nabla u + (\nabla u)^T) - (2/3)\eta (\nabla \cdot u)I] + F \]

\[\nabla \cdot (\rho u) = 0 \]

Where:

\(\rho \): density;

\(u \): velocity field;

\(p \): pressure;

\(I \): identity matrix;

\(\eta \): dynamic viscosity;

\(F \): volume force.
Approaches – System Analysis

- **Volume Force - F**
 - Acting on a unit volume of water

 Volume Force = Buoyancy – Gravity

 \[
 F = \frac{(B - G)}{V} \\
 = \frac{(\rho \cdot g \cdot V' - \rho \cdot g \cdot V)}{V} \\
 = \rho \cdot g \cdot \frac{(V' - V)}{V} \\
 = \rho \cdot g \cdot \frac{\Delta V}{V}
 \]

- **Coefficient of Thermal Expansion - \(\alpha\)**

 \[
 \frac{\Delta V}{V} = \alpha (T' - T)
 \]

 \[
 F = \rho \cdot g \cdot \alpha (T' - T)
 \]
Approaches – System Analysis

- Simulation Assumptions
 - Inward Heat Flux – 120 W/m²;
 - Inlet and Outlet

- Other Assumptions
 - Ignore thermal expansion of glass;
 - Ambient temperature is 298.15 K;
 - Other than natural convection, no other types of dynamic;
 - Ignore effects of water tank.
Energy increment at the Outlet Boundary

- A certain mass of water (M);
- Initial temperature \(T_0\) at the inlet boundary;
- After being heated over a certain time \(t\);
- Final temperature \(T\) at the outlet boundary;

Energy Increment:

\[
\Delta Q = C_p M (T - T_0)
\]

\[
= C_p \rho V \Delta T
\]

\(\rho\) is the density of water;

\(V\) is the volume of water.
Approaches – Post Processing

- Efficiency Function

\[\Delta Q = C_p \times \rho \times V \times \Delta T \]

Divided by the time ---- t:

\[\frac{\Delta Q}{t} = C_p \times \rho \times \frac{V}{t} \times \Delta T \]

\(\frac{\Delta Q}{t} \) is the efficiency;

\(\frac{V}{t} \) is the volume of water flows through per unit time;

Two variables: \(\frac{V}{t} \) & \(\Delta T \)
Approaches – Post Processing

- **Velocity Field**
 \[
 V_{2D} = \int nVdV = \int (nx*u + ny*v)dV
 \]
 \[
 V_{3D} = \int nVdV = \int (nx*u + ny*v + nz*w)dV
 \]

- **Temperature Difference**
 \[
 \Delta T_{2D} = \int (T - T_0)dT
 \]
 \[
 \Delta T_{3D} = \int (T - T_0)dT
 \]

- **Thus,**
 \[
 P_{2D}Cp*\rho\int (nx*u + ny*v)(T - T_0)d(V,T)
 \]
 \[
 P_{3D} = Cp*\rho\int (nx*u + ny*v + nz*w)(T - T_0)d(V,T)
 \]
Results – 2D Finite Element Model
Results – 3D Finite Element Model
Results – Mounting Angles

<table>
<thead>
<tr>
<th>Mounting Angle (Deg)</th>
<th>Efficiency (W/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>158.46</td>
</tr>
<tr>
<td>20</td>
<td>166.12</td>
</tr>
<tr>
<td>25</td>
<td>168.22</td>
</tr>
<tr>
<td>30</td>
<td>167.47</td>
</tr>
<tr>
<td>35</td>
<td>165.00</td>
</tr>
<tr>
<td>40</td>
<td>162.78</td>
</tr>
<tr>
<td>45</td>
<td>160.91</td>
</tr>
<tr>
<td>50</td>
<td>158.91</td>
</tr>
<tr>
<td>55</td>
<td>157.19</td>
</tr>
<tr>
<td>60</td>
<td>155.53</td>
</tr>
<tr>
<td>65</td>
<td>153.63</td>
</tr>
<tr>
<td>70</td>
<td>152.93</td>
</tr>
<tr>
<td>75</td>
<td>151.64</td>
</tr>
<tr>
<td>80</td>
<td>147.93</td>
</tr>
<tr>
<td>85</td>
<td>145.93</td>
</tr>
<tr>
<td>90</td>
<td>143.87</td>
</tr>
</tbody>
</table>
Results – Aspect Ratios

<table>
<thead>
<tr>
<th>Tube Length (m)</th>
<th>Efficiency (W/m)</th>
<th>Adjusted Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20</td>
<td>167.47</td>
<td>139.5583</td>
</tr>
<tr>
<td>1.25</td>
<td>174.38</td>
<td>139.5040</td>
</tr>
<tr>
<td>1.30</td>
<td>182.04</td>
<td>140.0308</td>
</tr>
<tr>
<td>1.35</td>
<td>189.09</td>
<td>140.0667</td>
</tr>
<tr>
<td>1.40</td>
<td>196.40</td>
<td>140.2857</td>
</tr>
<tr>
<td>1.45</td>
<td>203.41</td>
<td>140.2828</td>
</tr>
<tr>
<td>1.50</td>
<td>210.65</td>
<td>140.4333</td>
</tr>
<tr>
<td>1.55</td>
<td>217.6</td>
<td>140.3871</td>
</tr>
<tr>
<td>1.60</td>
<td>224.18</td>
<td>140.1125</td>
</tr>
<tr>
<td>1.65</td>
<td>230.95</td>
<td>139.9697</td>
</tr>
<tr>
<td>1.70</td>
<td>237.56</td>
<td>139.7412</td>
</tr>
<tr>
<td>1.75</td>
<td>243.78</td>
<td>139.3029</td>
</tr>
<tr>
<td>1.80</td>
<td>250.71</td>
<td>139.2833</td>
</tr>
</tbody>
</table>
Conclusions

- Mounting Angles: Efficiency rises and reaches the maximum at 25°, then begin falling and reaches the minimum at 90°.

- Aspect Ratios: As tube diameter maintains as a constant, tube with aspect ratio of (1500/47) has the highest efficiency.
Future Work

- Compare the results with experimental data
Questions?