Solar Thermal Energy
For Cooling and Refrigeration:
Status and Perspectives

Intersolar Fair, München, 13/06/2012

Daniel Mugnier
TECSOL
Contents

1. Introduction
2. Technical status
3. Energy performance
4. Market status
5. Economic viability
6. Perspectives and R&D challenge
7. Conclusion
Introduction: World air conditioning market

In 2011, the World market is representing...

- **Value (US$)**
 - Total 2011: US$85.2 billion

- **Volume (units)**
 - Total 2011: 118,218,014 units

+10% market increase market since 2009
Introduction

Overall approach to energy efficient buildings in Europe

- Assure indoor comfort with a minimum energy demand

1. Reduction of energy demand
 - Building envelope; ventilation

2. Use of heat sinks (sources) in the environment
 - Ground; outside air (T, x) directly or indirectly; storage mass

3. Efficient conversion chains (minimize exergy losses)
 - HVAC; combined heat, (cooling) & power (CH(C)P); networks; auxiliary energy

4. (Fractional) covering of the remaining demand using renewable energies
 - Solar thermal; PV; (biomass)
Introduction on Solar Cooling Evolution

From World exhibition in Paris: First ice block through solar energy (1878)

Source: Olynthus Verlag

To Banyuls sur Mer ... (1991)
Europe
52 kW – 130 m²
Still running nominally

Source: TECSOL

To UWCSEA in Singapore ... (2011)
1500 kW – 4000 m²
Asia

Source: SOLID
Contents

1. Introduction
2. Technical status
3. Concepts & Energy performance
4. Market status
5. Economic viability
6. Perspectives and R&D challenge
7. Conclusion
Solar thermal cooling - basic principle

Thermally driven cooling system / air-conditioning system

Basic systems categories

- Closed cycles (chillers): chilled water production
- Open sorption cycles: direct treatment of fresh air (temperature, humidity)
Closed cycles – water chillers or ice production

- Liquid sorption: Ammonia-water or Water-LiBr (single-effect, double-effect, future triple-effect)

- Solid sorption: silica gel – water, zeolite-water

- Ejector systems

- Thermo-mechanical systems

Turbo Expander/Compressor
AC-Sun, Denmark in TASK 38

source: website Kawasaki Heavy Industries Pte Ltd
Open sorptive cycles – desiccant air handling units

Air treatment in an open cycle

- **Solid sorption**
 - Desiccant wheels
 - Coated heat exchangers
 - Silica gel or LiCl-matrix, future zeolite

- **Liquid sorption**
 - Packed bed
 - Plate heat exchanger
 - LiCl-solution: thermochemical storage possible

ECOS (Fraunhofer ISE) in TASK 38
Technical status

- **Mature components available** (both solar and refrigeration, A/C)

<table>
<thead>
<tr>
<th>Driving temperature</th>
<th>Collector type</th>
<th>System type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (60-90°C)</td>
<td>![Image]</td>
<td>Open cycle: direct air treatment</td>
</tr>
<tr>
<td></td>
<td>![Image]</td>
<td>Closed cycle: high temperature cooling system (e.g. chilled ceiling)</td>
</tr>
<tr>
<td>Medium (80-110°C)</td>
<td>![Image]</td>
<td>Closed cycle: chilled water for cooling and dehumidification</td>
</tr>
<tr>
<td></td>
<td>![Image]</td>
<td>Closed cycle: refrigeration, air-conditioning with ice storage</td>
</tr>
<tr>
<td>High (130-200°C)</td>
<td>![Image]</td>
<td>Closed cycle: double-effect system with high overall efficiency</td>
</tr>
<tr>
<td></td>
<td>![Image]</td>
<td>Closed cycle: system with high temperature lift (e.g. ice production with air-cooled cooling tower)</td>
</tr>
</tbody>
</table>
Sorption cooling

<table>
<thead>
<tr>
<th>Type of system</th>
<th>Water chillers (closed thermodynamic cycles)</th>
<th>Direct air treatment (open thermodynamic cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical phase of sorption material</td>
<td>Liquid</td>
<td>Solid</td>
</tr>
<tr>
<td>Sorption material</td>
<td>Water</td>
<td>Lithium-bromide</td>
</tr>
<tr>
<td>Refrigerant</td>
<td>Ammonia</td>
<td>Water</td>
</tr>
<tr>
<td>Type of cycle</td>
<td>1-effect</td>
<td>1-effect</td>
</tr>
<tr>
<td>COP range</td>
<td>0.5 - 0.75</td>
<td>0.65 - 0.8</td>
</tr>
<tr>
<td>Driving temperature range, °C</td>
<td>70 ... 100</td>
<td>120 ... 180(1)</td>
</tr>
<tr>
<td>Solar collector technology(2)</td>
<td>FPC, ETC SAT(1)</td>
<td>FPC, ETC SAT</td>
</tr>
</tbody>
</table>

1: high temperature lift
2: FPC = flat plate collector; ETC = evacuated tube collector; SAT = single axis tracking collector; SAHC = solar air heating collector
Technical status

- **Mature components available** (both solar and refrigeration, A/C)

- **Main progress made in last decade**
 - *Small scale heat driven chillers*
 - *Increasing number of high efficient double and – recently – triple effect absorption chillers*
 - *Development of systems using single-axis tracking solar collectors*
High-temperature applications

- Increasing number of systems using single-axis concentrating collectors (parabolic trough, Fresnel) in combination with thermally driven chillers (150°C ... 200°C)
 - Double-effect chiller with high conversion efficiency (Coefficient of Performance COP 1.1...1.3)
 - Single-effect chiller with high temperature lift for low cooling temperatures (e.g. ice production) and high heat rejection temperatures (dry cooling towers)

- Application in sunny regions for buildings (e.g. hotels) or industrial application (e.g. cooling of food, ice production)
High-temperature applications

Example: Football Stadium in Dubai
Technical status

- **Mature components available** (both solar and refrigeration, A/C)

- **Main progress made in last decade**
 - *Small scale heat driven chillers*
 - *Increasing number of high efficient double and – recently – triple effect absorption chillers*
 - *Development of systems using single-axis tracking solar collectors*

- **Main technical shortcomings are still on system level**
 - *Energy efficient heat rejection system*
 - *Energy management*
 - *Bottleneck: good trained technical staff almost not available*
Contents

1. Introduction
2. Technical status
3. Concepts & Energy performance
4. Market status
5. Economic viability
6. Perspectives and R&D challenge
7. Conclusion
Influence of solar fraction of driving heat

- Target zone for system design

- Energy saving compared to conventional system:
 - Energy saving:
 - Negative
 - Low
 - High

- Solar fraction of driving heat to operate thermally driven cooling:
 - High temperature double-effect
 - Low temperature single-effect

- Fraction of driving heat:
 - Low
 - Medium
 - High
Influence of electricity consumption of auxiliary components

Energy saving compared to conventional system

Overall electricity consumption of auxiliary components (fans, pumps, ...)

Best practice

Also found in practice

High

Low

Negative
Cold production and Temperature "lift": arid regions

Arid Regions
$T_M = 40^\circ C$

High T lift
$T_c = +5^\circ C$

Continental climate
$T_M = 28^\circ C$

Low T lift
$T_c = -10^\circ C$

Heat rejection
Medium temperature, T_M

Heat supply
High temperature, T_H

Cold production
Low temperature, T_c
Energy performance

- Many systems lead to measurable energy savings when compared to a best practice conventional reference solution.

- Best values of overall electric COP range up to 6-8, which means that 6-8 kWh of useful cooling are produced with 1 kWh of invested electricity.

- Target value for electric COP > 10.

- However: also many systems do not achieve these values in practice due to:
 - Non-optimal design
 - Non-optimal operation (e.g. control, part load)
Example of performing concept in 2011

Building block in Montpellier, France
2 parts: building A & B (mini district)
Building A: 11 000 m² for offices and shops
Building B: 10 600 m² with 167 dwellings

Both production of Domestic Hot Water and Cooling

Safe solar production: drainback strategy (freeze & overheating protections)

Energy performance: Electrical COP of... 17!
Contents

1. Introduction
2. Technical status
3. Concepts & Energy performance
4. Market status
5. Economic viability
6. Perspectives and R&D challenge
7. Conclusion
About 150 new installations in 2010 and 2011 (+30%)
Market analysis: Europe / World

Mainly US, China and Australia

Total amount of installed Solar Cooling systems in Europe and the World

Sources: Climasol, Fraunhofer ISE, Rococo, Tecsol
Market share (2009)

- Absorption: 14%
- Adsorption: 13%
- DEC solid: 2%
- DEC liquid: 71%

Percentage of use of different technologies for thermally driven chillers within 113 large scale systems.

Ab/Adsorption representing nearly 85%...

Source: EURAC, Sparber & Napolitano, 2009
Air-conditioning of a production hall in Greece

Air-conditioning of a meeting room and cafeteria in Freiburg/Germany

Wine cooling in southern France

Wine cooling in Tunisia

Air-conditioning and process heat production for a hotel in Turkey
Recently large and very large installations (examples)

CGD Bank Headquarter
Lisbon, Portugal
1560 m² collector area
400 kW absorption chiller
Source: SOLID, Graz/Austria

FESTO Factory
Berkheim, Germany
1218 m² collector area
1.05 MW (3 adsorption chillers)
Source: Paradigma, Festo

United World College (UWC)
Singapore
3900 m² collector area
1.47 MW absorption chiller
Source: SOLID, Graz/Austria
Contents

1. Introduction
2. Technical status
3. Concepts & Energy performance
4. Market status
5. Economic viability
6. Perspectives and R&D challenge
7. Conclusion
Economic viability

- **First cost 2-5 times higher than for conventional technology**

- **Total first cost found in realized installations:** 2000 – 5000 € per kW of cold production (for entire system including solar collector field)

- **Payback time depends strongly on boundary conditions**
 - Annual numbers of use (cooling, heating, hot water, ...)
 - Conventional energy cost
 - Climatic conditions

- **Best conditions:** payback < 10 years possible
Cost Reduction Potential of Solar Cooling Kits

- **Solar Plant (Collectors and Storage):**
 max. 10% Cost Reduction Potential in the next 2-3 years

- **Small-Scale Sorption Chillers:**
 max. 20% Cost Reduction Potential till 2013, from 2011 up to 50% if Serial Production is started (Production Capacity larger than 500 Units)

- **Recooler:**
 Cost Reduction Potential between 40-50%

- **Control:**
 min. 60% Cost Reduction Potential, Increasing of the System Performance

- **Installation:**
 10-30% Cost Reduction Potential through Standardized Solar Cooling Kits

Source: Uli Jakob, SOLARNEXT
How do reduce costs?

High performance flat plate collectors + drainback

Performing, safe and cheap Evacuated Tube collectors

Compact packages solutions

And above all...

Large scale production
Contents

1. Introduction
2. Technical status
3. Concepts & Energy performance
4. Market status
5. Economic viability
6. Perspectives and R&D challenge
7. Conclusion
Perspectives (1/2)

- **Systems using non-tracking solar collector technology**
 - Solar heating & cooling (+ DHW) → summer use of large collector fields
 - Application in buildings: residential, tertiary sector
 - Significant cost reductions in particular for small scale thermally driven chillers (> 50 % possible)
 - Increasing level of standardization
 - Pre-fabricated systems for small capacity
 - Custom-made systems for commercial buildings
 - Desiccant systems in particular for air dehumidification in humid climates
Perspectives (2/2)

- **Systems using single-axis tracking with optical concentration**
 - Medium and large capacity range in regions with high direct solar radiation
 - Applications with dominant use of cooling (e.g. industrial refrigeration)
 - Installation either on the ground or large flat roofs of industrial buildings
 - High efficient cooling cycles using double- or triple-effect
 - Applications which require a high temperature-lift (e.g. food conservation with dry cooling tower)
Example of a French R&D project

Duration: 2010-2013 / Budget: 1,2 M€

Objective: To create methodologies for optimised solar heating and cooling

Outputs in 2012:
1) Performance analysis tool based on indicators
2) Guides for design, call for tender, monitoring, O&M
3) Fast calculation soft tool

⇒ Guarantee of solar cooling results
R&D challenges

- **Heat rejection**: full integration, lower O&M costs => application as add-in for residential buildings for 100% solar houses in Southern European countries

- **New and small capacity open cycles** to be integrated in ventilation systems for residential sector

- **Demonstration activities for large solar cooling packaged systems** (more than 100 kW) => cost reduction and guarantee results. Application: industry, cooling networks and large buildings.

- **Quality assurance measures for solar cooling** (T48 SHC-IEA), among others:
 - Automated failure detection & monitoring
 - Systems testing & characterization
 - Control strategies optimization
Quality assurance & support measures for Solar Cooling

Duration: 3.5 years (October 2011 – March 2015)

Subtask A: Quality procedure on component level

Subtask B: Quality procedure on system level

Subtask C: Market support measures

Subtask D: Dissemination and policy advice

PARTICIPATING COUNTRIES: Australia, Austria, Canada, China, France, Germany, Italy, Singapore, South Africa, Spain and USA *(no claim for completeness)*

PARTICIPATING MANUFACTURERS AND COMPANIES: Climatewell, Industrial Solar GmbH, Invensor, Himin, Shinagliang, Sortech, SOLEM, SOLID, TECSOL, Thermosol, Vaillant, Vicot, *(no claim for completeness)*

Conclusion & outlook

- Solar heating and cooling (SHC) systems will play a significant role in our future energy system

- They provide an energy saving solution on the demand side without negative (possibly positive) impact on the electricity grid

- **Main challenge** is to assure **high quality of installations in broad market**

- From **technology** companies toward **sales companies & powerful lobbies**...

Thank you for your attention !!!

daniel.mugnier@tecsol.fr